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Introduction

Over the last two years several satellites in Low Earth Orbit (LEO) and geosynchronous orbit
(GEO) have experienced serious or catastrophic failures. In preliminary analyses it has been shown that
severe electrostatic discharges from spacecraft dielectric surfaces (e.g solar arrays and thermal blankets)
can sustain high discharge currents capable of disabling key avionics components posing a threat to
satellite survivability.

Short Summary

Surface charging of spacecraft surfaces in LEO and GEO orbit environments is caused primarily
by electrons with energies oscillating between 1 and 50 KeV, specially during magnetospheric
substorms. In this type of charging strong electric fields develop. When the electric fields exceed critical
values electrostatic discharges (ESD) can cause not only EMI but can pose potential threats to spacecraft
hardware.

When an ESD event occurs, charge is blown off from the dielectric surface which induces a
replacement current to flow in the satellite structure. A rapid surface potential change induces noise in
circuits through capacitive coupling. The objective is to estimate the current distribution and generated
fields along complex conductive paths as shown for example in Figure 1 for the discharge event between
a solar array and shielded wires connecting the solar array cells and a charge control unit inside the
spacecraft. The method of moments is used to analyze the current distribution paths. ‘
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Figure 1. Modeling ESD Events Between a Solar Array and Cable.
References: '
{17 Wilson, P.F. “Fields radiated by electroststatic discharges,” IEEE Trans. on Electromagnetic
Compatibility, Vol. 33, Feb. 1991.


mailto:email:ray.j.perez@lmco.com

Modeling ESD Events in Low Earth Orbit Satellites

Reimaldo Perez
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA



OUTLINE

1) Ilustration of the ESD Problem in Satellites
2) Explaining the Problem of ESD Events
3) Methods for Modeling ESD Events

4) The usage of computational tools for modeling the
ESD events.

5) Conclusions



Illustration of the ESD Problem in Satellites
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Explaining the Problem of ESD Events



ESD Effects on Satellites

Simply stated: Elec discharge events in satellites can
disable a satellite.
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Methods for Modeling ESD Events
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The usage of computational tools for modeling the
ESD events
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Wire Loop MODELING THE RADIATING STRUCTURE @
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RAY’S AXIOMS ON EMC MODFELING

1) Good test(s) may be worth 100 models (1000 models for
ignorant modelers)

2) If you don’t know what is going on. Do not model.

3) (collorary to # 2). Garbage in produces nothing but garbage
(it does not matter how good and how much money you spent
on your software).

4) The validity of code results depends more on the
identification of the relevant physical processes and the
soundness of approximations than on the sophistication of the
MOM code or the size of your computer.

5) NEVER buy a MOM code (or really any code) without
comprehensive documentation of the underlying equations,
principles, approximations, and validity ranges. 'T'o do the
contrary ranges from nseless to dangerous.

6) Buying software to solve engineering problems is not an
alternative to learning how to solve engineering problems.

7) Extensive analytical benchmark testing of new or existing
technical software is critical because bugs are everywhere.
NEVER accepts for validation of vendor’s results of his
benchmarks as the nltimate rationale. Develop your own and
fest them.



8) If you simulation brings forth an amazing potentially-
publishable result, look for a numerical instability.

9) Beware the illusion of simplicity. Codes that appear to have
all the data at hand and to make all the decisions for you
(specially in EMC) are often based on uestionable
approximations.

10) Beware of EMC miracle workers: persons/vendors who
claim their software (and technical expertise in modeling) will
solve all your EMI problems.



